Strategies and Practice toward the Development of Green Super Rice

Qifa Zhang

National Key Laboratory of Crop Genetic Improvement Huazhong Agricultural University Wuhan, China

Challenges to rice production

- Severe damages by pests and diseases, and indiscriminate applications of pesticides
- Pressure for high yield and over use of chemical fertilizers
- Water shortage and drought
- Low productivity of marginal lands
- Pressures for improvement of grain quality
- Ever increasing demands for increasing yield potential

Damages by insects and diseases and pesticide use in rice

- Major pests

 Leaf-folders and stemborers
- Leaf-folders and stembor
 Plant hoppers
 Major diseases

- Blast - Sheath blight - Leaf blight
- Excessive application of chemical pesticides
- Severe damages to the environments
- Heavy economic costs to the farmers
- Harms to the health of farmers and consumers

Consumption of nitrogen and phosphorus fertilizers in China

- Nitrogenous fertilizers (http://faostat.fao.org/) :
 - 25.43 million tons in 2002
 - 30.0% of world total (84.75 million tons)
- Phosphate fertilizers (http://faostat.fao.org/):
 9.92 million tons in 2002
 29.6% of the world total (33.55 million tons)
- The total consumption is projected to be 60 million tons by 2030 (国家中长期肥料发展规划)

Negative impacts of over-fertilization

- Low efficiency of utilization
- Eutrophication of ground water, rivers, lakes and the seas
- High cost to the farmers
- Reducing the quality of the products

Water use and drought in rice

- Agriculture uses about 70% of the water consumed in China, of which about 70% is used for rice production
- Drought is occurring more frequently than ever before

Chinese scientists call for a "second green revolution"

- The goals of "second green revolution"
 - Less input
 - More production
 - Better environment

少投入、多产出、保护环境

Green Super Rice

- Pesticide spray minimized
- Fertilizer application greatly reduced
- Water saving and drought resistant
- Superior quality
- High yielding

Three stages of development

- Minimizing pesticide spray (3-4 years)
- Large reduction in fertilizer application (5-8 years)
- Drought resistance (8-10 years)

GOAL 1: Minimizing pesticide use

- Adequate genetic (gene) resources
- Technology matured
- Lines and cultivars already available
- Main constraints are in policies and extension systems

In the pipeline: additional genes and transgenics

- More genes
 - Cry1Ab
 - Cry1Ac Cry1Ca

 - Cry2Ab
 - Cry9C
 - Shuffling products of these genes
- Transgenic rice with multiple resistances as a strategy for resistance management

Transgenic rice with two genes for resistance:

Brown planthopper
resistant genes
reported in the
literature

Zhang Q 2007 PNAS 104:16402-16409

Germplasm	Gene	Chrom	Reaction to biotype				Reference
			1	2	3	4	1
Mudgo	Bph1	12	R	S	R	S	36-38
ASD7	bph2	12	R	R	S	S	36, 39
Rathu Heenati	Bph3	6	R	R	R	R	40
Babawee	bph4	6	R	R	R	R	41, 42
ARC 10550	bph5		S	S	S	R	43
Swarnalata	Bph6		S	S	S	R	43
Г12	bph7		S	S	S	R	43
Chin Saba	bph8		R	R	R		44
Balamawee	Bph9	12	R	R	R	-	44, 45
O. australiensis	Bph10	12	R	R	R		46
O. officinalis	Bph11	9	-	-	-	-	47
O. officinalis	bph12	3	-	-	-		48
O. eichinger	Bph13	2	R	R	-		49
B5	Bph14	3	R	R	-		50
B5	Bph15	4	R	R	-	-	50
0. officinalis	bph16	4	-		-		51
B14	Bph17	4	R	R	-	-	52
O. officinalis	Bph17	3	-	-	-	R	53
O. australiensis	Bph18	12	BPH	pop on '	Faebaekl	oyeo	54
AS20-1	bph19	3		R	-		55

NILs	Gene	Infection strains	Resistance frequency (%)
C101LAC	Pil	13	82.7
C101A51	Pi2	11	85.3
C104PKT	Pi3	57	24.0
BL1	Pi1+Pi3	8	89.3
BL2	Pi1+Pi3	7	90.7
BL5	Pi1+Pi3	5	93.3
BL3	Pi2+Pi3	4	94.7
BL4	Pi2+Pi3	5	93.3
BL6	Pi1+Pi2+Pi3	2	97.3
CO39 (ck)	None	75	0
Zhenshan 97	Unknown	46	38.7

GOAL 2: Reduction of fertilizer application

- Objectives seem well defined
- Researches are under way
- Prospects are clear

Reducing fertilizer application: technical definition

- Adequate uptake under field conditions of low nutrient concentrations (uptake efficiency)
- Efficient utilization of the absorbed nutrients (utilization efficiency)

Improving uptake efficiency

- Improving root architecture
- From passive to active absorption by enhancing transporter activity
 - High-affinity transporters (uptake under low concentration conditions)
 - Low-affinity transporters (uptake under high concentration conditions)

Improving the utilization efficiency: the N case

- Goals
 - Improving the efficiency of use and re-sue Reducing the loss in recycling
- Approaches
 - Modifying the genes involved in N assimilation pathways to improve the utilization efficiency
 - Discovering and identification of genes useful for improving NUE

Ammonium transporters in rice • OsAMT1-1 AF289477/AAL05612 532aa • OsAMT1-2 AF289478/AAL05613 497aa • OsAMT1-3 AF289479/AAL05614 495aa • OsAMT2-1 AB051864/BAB87832 486aa • OsAMT2-2 AB083582/BAC65232 498aa • OsAMT2-3 NM_190448/NP_915337 500aa • OsAMT3-1 NM_190790/NP_915679 498aa • OsAMT3-2 XM_469225/XP_469225 353aa • OsAMT3-3 XM_469749/XP_469749 299aa • OsAMT4 XM_470358/XP_470358 479aa

Genes involved in N-assimilation pathways

- GS2)
- Glutamate synthase (NADH-GOGAT, Fd-GOGAT)
- Glutamate dehydrogenase (GDH)
- Ammonium transport and transfer
- Aspartate aminotransferase (AspAT)
- Asparagine synthetase (AS)

Core collections constructed by using diversity of whole genome SSR markers as the criteria

	Accs. Core collection in the		Mimi-core collection				
	bank	Acc.	% No.	% diversity	Acc.	% No.	% diversity
Rice	61479	3074	5	89.9	300	0.5	66.6
Wheat	23135	1160	5	90.1	231	1.0	69.1
Soybean	28809	1439	5	91.0	280	1.0	71.0
			Ε	ata source:	Prof. Ji	a Jizer	ng (2004)

	QTL: Zher	s identi 1shan97	fied for low //Minghui 6.	N toler 3 RIL p	ance usin opulatio	ıg n
QTL	Exp	Chrom	Interval	LOD	Var (%)	Α
NUE1	1	1	RG173-G1128b	3.16	5.8	0.020
NUE1	2		RG173-G1128b	2.67	4.1	0.017
NUE2			RM237-C922	4.07	7.8	-0.024
NUE2			RM237-C922	5.53	9.9	-0.027
NUE3			C86-RG236	3.08	5.6	-0.020
NUE3			C86-RG236	4.15	6.4	-0.021
NUE4			G4001-C1003B	2.78	5.6	-0.020
NUE4			G4001-C1003B	4.03	7.5	-0.023
NUE5			Rg393-C1087	2.65	4.0	0.016
				Lian et al	. Theor Appl (Genet 2005

Genes se	lected from	m the chip results for functional testing
GENE	Ratio(T/C)	Function
CHIP17-C24	4.8	Ran-binding protein
CHIP18-O1	5.3	Hypothetical protein
CHIP19-J06	2.3	expressed protein
CHIP20-H17	6.4	Centromere protein
CHIP20-K18	3.3	Putative carnitine/acylcarnitine protein or mitochondrial carrier protein family
CHIP22-H13	2.2	Unknown protein or Zinc finger protein
CHIP14-F01	0.26	33-Kda secretory protein / protein kinase-related protein
CHIP05-E09	0.35	H-transporting ATP synthase chain 9-like precursor
CHIP15-B08	0.26	Atranbp1b/Ran binding protein
CHIP19-H19	0.2	Unnamed protein
CHIP01A21	3.2	unknow
CHIP01G09	3.8	xyloglucan endotransglycosylase
CHIP01H10	6.5	lipid transfer protein
CHIP01I01	4.0	unknown
CHIP03K02	2.3	photosystem II oxygen-evolving complex protein 2 precursor
CHIP04A09	4.1	putative elicitor-inducible protein
CHIP07M18	3.9	putative resistance protein
CHIP08E09	2.2	putative ubiquinone/menaquinone biosynthesis methyltransferase

Utilization of the mutant library for discovering genes for NUE

- The mutant library has three built-in strategies for functional identification of the genes
- >270,000 independent transformants generated
- More than 20,000 flanking sequences currently isolated
- Mutant lines were screened for various traits

- Urgent
- Complex
- Traits and targets have not been well defined

Improving drought resistance of irrigated rice

- Targeted stages: reproductive and maturity stages
- Mechanisms
 - Drought tolerance (shoot)
 - Drought avoidance (root)

Mapping and identification of genes for drought resistance

- Mapping and breeding population

 Zhenshan 97 (irrigated hybrid parent)/IRAT109 (upland)
 - 203 RILs, F7/F8

Expression profiles of genes under drought stress

Materials

- Zhenshan 97: hybrid parent (irrigated rice)

Seed setting (%)

- IRAT109: upland rice

Drought responsive genes selected for transgenic analysis

Number of genes	Induction fold	Predicted function / Category	Gene family/ description
11	1.6 – 7.2	Signal transduction	RLK, MAPK, CIPK, PP2C, ABA signaling,
22	1.6 - 5.2	Transcription factor	AP2, bZIP, ZF, NAC
4	1.7 – 4.1	Transportation	Transporter, antiporter,
12	2.9 – 5.4	Known function proteins	ABA synthesis, Protein for OA, anti-oxidation
8	1.7 – 10	Unknown function	

Transgenic rice with enhanced drought resistance

- Encoding a transcription factor
- Its over-expression enhanced resistance
- Regulating stomatal closure

G	enes from vario rice for t	ous sources used testing drought t	for transforming colerance
Gene	Category	Gene product/function	Literature
CBF3	AP2 type transcription factor	Transcription factor	Jaglo-Ottosen et al., 1998; Kasuga et al., 1999
LOS5	ABA biosynthesis	Water status regulation	Xiong and Zhu, unpublished
SOS2	Protein kinase	Ion homeostasis	Guo and Zhu, unpublished
TPS	Trehalose-6-phosphate synthase	Novel osmoprotectant	Holmstrom et al., 1996; Yeo et al., 2000
HVA1	LEA protein gene	Tolerance to drought and salt stress	Xu et al. 1996
NPK1	МАРККК	Detoxification of ROS	Kovtun et al., 2000
ZAT10	Zinc finger transcription factor	Transcription factor	Lee and Zhu, unpublished
NCED3	9-cis-epoxycarotenoid dioxygenase	Water status regulation	Qin and Zeevaart, 2002; Iuchi e al., 2001; Thompson et al., 2000
NHX1/2	Vacuolar Na ⁺ /H ⁺ antiporter	Ion homeostasis	Apse et al., 1999
CodA	Choline oxidase	Novel osmoprotectant	Sakamoto et al., 1998, 2000; Prasad et al., 2000

	G	Grain yield (g/plant) ^a				
Construct (promoter:gene)	Normal growth	Drought stress in field	Drought stress in PVC	Drought stress field	Drought stress field PVC	
Wild type (ZH11)	32.55±1.98	7.64±0.23	21.11±0.92	0.23	0.65	
Actin1:CBF3	17.65±0.89**	3.74±0.30*	13.76±0.62**	0.21	0.78**	
HVA22P:CBF3	14.59±0.67**	4.80±0.25*	12.42±0.52**	0.33**	0.85**	
Actin1:SOS2	17.70±0.89**	4.36±0.33*	12.32±0.61**	0.25	0.69	
HVA22P:SOS2	15.91±0.81**	7.30 ± 0.31	9.96±0.55**	0.46**	0.59	
Actin1:NCED1	22.87±0.79*	4.89±0.28*	13.14±0.59**	0.21	0.57	
HVA22P:NCED1	22.20±2.29*	3.98±0.28*	13.96±0.73**	0.18	0.63	
Actin1:NPK1	18.50±1.07**	2.78±0.19**	14.73±0.60**	0.15*	0.81**	
HVA22P:NPK1	17.42±1.10**	5.15 ± 0.27	14.36±0.69**	0.30*	0.83**	
Actin1:LOS5	16.79±0.66**	7.81±0.39	13.23±0.61**	0.47**	0.79**	
HVA22P:LOS5	14.14±1.32**	4.83±0.34*	11.10±0.66**	0.34**	0.79**	
Actin1:ZAT10	15.99±0.79**	6.62±0.39	11.92±0.54**	0.41**	0.75*	
HVA22P:ZAT10	15.76±0.85**	6.08±0.25	12.77±0.51**	0.39**	0.81**	
Actin1:NHX1	17.76±0.90**	6.75±0.28	12.57±0.56**	0.38**	0.71*	
HVA22P:NHX1	13.05+1.01**	3.56+0.25*	9 97 + 0 49**	0.27*	0.76*	

Perspectives

- Development of green rice is of paramount importance to the sustainability of agriculture, environment and human society.
- The task is multidisciplinary and requires collaborations of scientists working in different areas and countries.
- Arduous but no alternative.

Network of the Molecular Breeding Project

Participants: Anhui Agric Acad CAAS CNRRI **Guangdong Agric Acad** Huazhong Agric U Jiangxi Agric Acad Liaoning Agric Acad Shanghai Agric Acad Shanghai Agro G C Shenyang Agric U Sichuan Agric Acad South China Agric U Yunnan Agric Acad

Contributors

- Lin (Deming Jin) Collaborators: Shanghai Agro-Gene Center (Lijun Luo) National Center of Gene Research, CAS (Bin Han) Wuhan University (Guangcun He) Chinese Academy of Agricultural Sciences (Yunliu Fan) CAMBIA (A. Killian and R. Jefferson) IRRI (S. Data, G. S. Khush)
 - Donald Danforth Plant Science Research Center University of Arizona

Financial supports

- 863
- 973
- 948

National Natural Science Foundation of China

- The National Special Key Project on Functional Genomics of Major Plants and Animals
- A National Special Key Project on Development of Transgenic Plants
- The Rockefeller Foundation